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1. EXECUTIVE SUMMARY 

This paper describes the use of YFilter concepts within the XML brokering task of the Joint 

Battlespace Infosphere (JBI).  XML Brokering in the context of the JBI is the determination of 

whether or not a publication matches the desired filters (predicates) specified by subscribers.  

The YFilter is a system designed for the XML brokering task.  The YFilter aims to share as 

much processing between predicates as possible.  This will reduce the total time required to 

evaluate all predicates for a given Information Object (IO).  Concepts from the YFilter were 

implemented and extended in the C++ language.  The resulting reduction in brokering time can 

enable greater scalability in the JBI.  The work presented includes an implementation of YFilter 

concepts in C++, integration with the 100X JBI, and performance analyses. 

 

The YFilter Broker was integrated with the 100X JBI and is currently the default broker.  The 

YFilter Broker was tested on the AFRL Coyote High-Performance Computing cluster.  The 

improvements described in this paper yielded up to a 15 fold decrease in brokering latency and 

up to a 15 fold increase in system throughput when compared with the prior software broker. 



 2

2. Introduction 

The Joint Battlespace Infosphere (JBI) is envisioned to be an information management system 

that allows users to dynamically provide, discover, and exchange information.  Among the 

services of the JBI are the Publish and Subscribe services, which allow JBI clients to 

communicate via the publish-subscribe paradigm.  Metadata in the JBI are specified in 

Extensible Markup Language (XML) [1], thus requiring the JBI infrastructure to perform XML 

brokering.  This report presents an approach to improve the speed of XML brokering by 

implementing concepts introduced in the YFilter project [2] and [3].  The expected gain is the 

improved scalability of brokering latency and system throughput as the number of JBI 

subscribers continues to increase. 
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3. Background Information 

3.1. Overview of JBI 

This section provides a brief overview of the JBI.  JBI terms are italicized in this section.  In the 

JBI, an Information Object (IO) is the unit of information that is published, stored, and/or 

retrieved.  An Information Object is of a specific type defined by an XML schema and consists 

of metadata in an XML document and a payload either in XML or in another supported format 

[7].  Information Object types are versioned.  A JBI publication is sent from a publishing JBI 

client to a JBI server.  A subscribing JBI client may request conditional delivery of publications 

by prescribing a predicate in the XML Path Language (XPath) [4].  The JBI server evaluates 

these predicates and transmits any matching publications to the subscriber.  In this paper, we 

assume the reader has a working knowledge of JBI terms.  For more information, the reader is 

directed to [5], [6], and [7]. 

 

The interactions of the JBI Clients attached to a particular JBI Server are described in the 

following general example. 

 
One or more subscribing JBI clients connect to a JBI server by issuing subscription 
requests.  Each request specifies the Information Object type that the subscriber wishes 
to receive as well as XPath predicates on the metadata of the corresponding Information 
Object type.  Upon accepting the subscriptions, the JBI Server commits to sending all 
publications matching the IO types and metadata to each subscriber.  Publishing JBI 
Clients then connect by issuing a publication request.  The publication request specifies 
the IO type that the JBI Client will publish.  Upon accepting the publications, the 
publishing JBI Clients may publish Information Objects of the specified type.  Those 
Information Objects will be brokered (the process of determining matching publications to 
subscriptions) and disseminated (distributed) to the matching subscribers.  

 
JBI Clients (both publishers and subscribers) can connect to the JBI Server at any time.  The 

subscriptions received by subscribing JBI Clients are Information Objects that have been 

published after the subscription request is completed.  In addition, the JBI Server only forwards 

Information Objects sent by publishing JBI Clients after the publication request has been 

completed. 
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3.2. Nondeterministic Finite Automata 

A Nondeterministic Finite Automaton (NFA) is similar to a Deterministic Finite 

Automaton (DFA) in that an NFA is a collection of states and transitions where the transitions 

are taken while consuming input.  Both NFAs and DFAs only recognize regular languages.  The 

major difference is that the execution of an NFA is nondeterministic in the sense that for any 

given input symbol there may be more than one next state.  In this sense, an executing NFA may 

be in multiple states at any given time.  In addition, an NFA allows epsilon transitions, which are 

transitions that consume no input.  The epsilon transition, in addition to the ability for a state to 

have multiple outgoing transitions with the same symbol, leads to the possibility to be in multiple 

states at any given time.  The notion of acceptance in an NFA is such that if at the end of the 

input, any of the current possible states is an accepting state, the input is accepted.  An NFA can 

be converted to a DFA and vice-versa.  An NFA typically requires fewer states than a DFA to 

represent a given grammar.  Because an NFA and a DFA can both represent the same grammar, 

the NFA will accept the same grammar of the corresponding DFA.  In short, the output of the 

NFA used in this work is deterministic.  For more information about Nondeterministic Finite 

Automata, please refer to [8]. 

 

3.3. Terminology 

The following terms are used throughout this report: 

 

Simple Predicate: The part of a Clause that contains value comparisons. 

• E.g., the bracketed part in: /a/b/c[text() = “hello”]  

 

Path Predicate: The part of a Clause that has bracketed nested Location Steps. 

• E.g., the bracketed part in: /a/b/[./c/d/e]/f/g 

 

Value-Based Predicate: A Simple Predicate or a Path Predicate. 
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Name Test: A string that identifies the name of an XML node.  If the name test is ‘*’, it will 

match an XML node with any name. 

• E.g., the name test ‘c’ 

 

Child Operator: The ‘/’ operator.  The child operator selects nodes that are children of the 

current context. 

• E.g., ‘/a’ will select all nodes whose node name is ‘a’ that are the direct child of the 

current context. 

 

Descendant Operator: The ‘//’ operator.  The descendant operator selects nodes at the child level 

and all levels below. 

• E.g., ‘//a’ will select all nodes in the document whose node name is ‘a’. 

 

Location Step: A navigation axis (either / or //) followed by a Name Test and zero or more 

Value-Based Predicates. 

• E.g., //c[text() = 4] 
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Clause or Predicate Clause: A set of Location Steps. 

• E.g., /a/b//c[text() = 4] 

 

Predicate: An XPath expression that consists of one or more Clauses combined by conjunctions 

(i.e., ‘and’, ‘or’, and ‘not’). 

• E.g., /a/b//c[text() = 4] and /d/e/f[text() = 5] 

 

Please note that we provide the above in order to have a quick reference handy for terms used 

commonly throughout this report.  We have simplified the terminology for ease of discussion.  

For a more complete set of definitions, please see [7]. 
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4. YFilter 

This section discusses YFilter concepts in general and how they may be of use in the JBI context.  

The implementation of the YFilter concepts in C++ and their use in the JBI are discussed in later 

sections. 

4.1. Overview of YFilter 

The YFilter [2, 3] is a research project started at the University of California, Berkeley; IBM 

Almaden Research Center; and the University of Heidelberg.  The YFilter aims to perform fast 

matching of XML documents against a large set of interest specifications and transformations of 

the matching XML documents based on interest specifications.  The interest specifications are 

specified in a subset of XQuery [9].  The XQuery 1.0 specification is an extension of XPath 2.0.  

The filtering interest specifications, also called predicates, provide a Boolean match result for a 

given document and are specified using XPath expressions [4]. 

 

Since the JBI is most concerned with brokering an Information Object based on its XML 

metadata, we chose to restrict our implementation of the YFilter concepts to the matching of 

predicates and not consider the transformation of the output XML.  According to the JBI 

specification, the subscription predicate of a subscribing JBI client either matches or does not 

match the IO’s metadata [5].  Therefore, our implementation of the YFilter concepts consists 

only of Boolean matching of XML documents to predicates.  Since we are not implementing the 

transformation part of the YFilter, we will not discuss transformation in detail.  The interested 

reader can read more on this topic in [10]. 

 
In previous work, such as [11], it has been stated that filtering is the inverse problem of querying 

a database.  In a database, a large dataset is stored persistently with queries coming in one at a 

time.  In a filtering system, a large set of predicates is stored persistently with data items coming 

in one at a time.  Therefore, while in a database, one would index (categorize) the data; in a 

filtering system, one should index (categorize) the predicates. 
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The YFilter compiles each predicate into a Nondeterministic Finite Automaton.  The YFilter then 

combines all predicates into one shared NFA (Figure 1).  This shared NFA takes advantage of 

any similarities in the predicate paths.  In addition, a predicate can be added to or removed from 

the shared NFA by adding and removing states that are unique to the given predicate. 

 

In Figure 1, two predicates that do not contain any value-based predicates are shown.  The 

solidly colored circles are the states that are shared by the two predicates in the shared NFA.  

The other states are those that are not in common.  The transitions between states are the name 

tests for each location step.  This figure also demonstrates how descendant operators are 

converted into states.  Each descendant has an epsilon transition to a state with a ‘*’ transition 

and an outgoing transition of the name test that follows the descendant.  Since the ‘*’ transition 

matches any input, the descendant of the ‘*’ transition introduces the requirement to potentially 

be in multiple states at any moment.  The double circles are the accepting states for each of the 

predicates. 

 

 
Figure 1: YFilter State Machine Example 
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As per the discussion of Nondeterministic Finite Automata in Section 3.2, the NFA in Figure 1 

has an equivalent DFA.  However, the number of states required to represent the descendant 

operator is far greater with a DFA. 

 

The original YFilter is written in the Java language.  Since the motivation of this work is to 

speed up the brokering for two JBI implementations, one in Java and one in C++, it made sense 

to implement the applicable concepts of the YFilter in C++ in order to achieve a native interface 

for the 100X JBI and to obtain a speedup from the C++ implementation. 

 

4.2. Evaluation of Predicates 

Once a set of predicates is compiled into a shared NFA, the NFA is driven by the parsing events 

produced by parsing an XML document.  In particular, the events produced by the Simple API 

for XML Version 2.0 (SAX2) [12] are used to drive the transitions to the next states. 

 

A predicate can consist of structural and Simple predicates.  The structural predicate is the 

collection of Location Steps (including nested Location Steps in a Path Predicate) and evaluate 

to Boolean true only when those steps exist in an XML document.  A Simple Predicate is the 

portion of the predicate that has a comparison of the text or attributes of an element to a value.  

The NFA only represents the structural portion of the predicates.  The comparison of values is 

not expressed in states.  In [2], the authors describe several options for evaluating the 

Simple Predicate portion of the predicate.  They briefly describe treating the value comparison as 

states stating that this would increase the number of states and reduce the ability to share states.  

They then describe two approaches that they have implemented: Inline and Selection Postponed.  

Based on their report, we have chosen to implement the Selection Postponed method because 

their conclusion is that it is the better of the two.  The interested reader can refer to the YFilter 

report [2] for a discussion of the Inline method.  The Selection Postponed method waits until the 

state machine consisting of the structural portion is in an accepting state before performing any 

value comparisons.  This requires some extra bookkeeping since we must be able to traverse the 

states previously visited if there are multiple Simple Predicates in a single clause.  However, the 
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Selection Postponed method allows us to stop evaluation if any of the value comparisons in the 

predicate clause evaluate to false, thereby indicating that the overall predicate clause also 

evaluates to false (i.e., due to AND logic). 

 

4.3. YFilter Grammar Limitations 

The XPath Grammar supported by Diao’s implementation of the YFilter is specified in the user 

manual that accompanies the source code [10].  The original YFilter implementation in Java has 

several limitations on the predicate grammar.  In order to obtain optimal use of the YFilter 

concepts in the JBI context, extensions to this grammar needed to be made.  The original YFilter 

grammar has the following limitations: 

• Supports only one clause predicates. 

• No support for AND, OR, and NOT operators (AND and OR are needed for multiple 

clause predicates). 

• Value-based predicates only support string equality for attributes and element text. 

• Does not support negative numbers. 

These limitations are only engineering limitations, not theoretical limitations.  As discussed in 

Section 5.4, we performed the requisite engineering work to extend the supported grammar. 

 

4.4. References to “YFilter” in this Technical Report 

Please note that, unless stated otherwise, all references to “YFilter” in this report are to the 

published and publicly available YFilter concepts.  For example, if it turns out that there is a 

commercial company – e.g., a startup – producing proprietary YFilter implementations, nothing 

of the kind is in any way referred to or known about in this report (the authors of this technical 

report have no such knowledge of anything like a startup around the YFilter occurring at the time 

of writing this report).  For a concrete example, the title of the next section – “YFilter C++ 

Implementation” – refers to C++ code implementing published, publicly available and non-

proprietary YFilter concepts. 
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5. YFilter C++ Implementation 

As part of this project, we implemented several of the YFilter concepts in the C++ language as a 

library that could be used by the JBI.  We call this library “YFilter C++”.  The interface class to 

the library is NFAStateMachine.  While a user of the library can create multiple 

NFAStateMachine instances, the instance’s methods are not thread-safe.  Therefore, in addition 

to the library, we also implemented a façade layer that allows thread-safe access.  The façade 

also supports predicates that may not be supported by the YFilter C++ predicate grammar by 

evaluating these predicates without using the NFAStateMachine. 

 

5.1. Overview of C++ Implementation 

In this work, we focused on the brokering of Information Objects, which occurs in the 

publish/subscribe interactions of the JBI.  The YFilter C++ work is probably not applicable to 

the query interactions of the JBI because, as stated in Section 4.1, database query is the inverse 

problem of filtering.  Therefore, the YFilter solution to problem of filtering will not yield the best 

results for database query.  We implemented the Selection Postponed method of simple value-

based predicate evaluation (see Section 4.2 for a discussion of Selection Postponed). 

 

5.2. Implementation Details 

Figure 2 shows the architecture of the YFilter C++ library.  This figure illustrates that both 

XPath predicates and XML documents enter the filtering engine and predicate matches for the 

documents exit the filtering engine.  In the following discussion of Figure 2, the names of 

components are italicized. 

 

The introduction of new predicates into the filtering engine starts with the predicate string 

entering the XPath Parser.  The XPath Parser component consists of a scanner and parser 

generated from the Flex and Bison tools respectively.  The XPath Parser is used to parse the 

XPath predicates so they can be compiled.  In the Predicate Compiler, a predicate is compiled 

from its parse tree representation into an NFA without consideration of other existing predicates.  
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The NFAStateMachine then accepts these states and adds the unique states to the shared NFA 

that the NFAStateMachine maintains.  For any common states, the NFAStateMachine registers 

the interest in those states of the predicate. 

 

 
Figure 2: YFilter C++ Architecture 

 
The other path shown in Figure 2 is the path taken when XML documents are evaluated.  The 

XML string is consumed by the XML Parser, which uses the LibXML2 library.  The 

XML Parser produces SAX events that drive the NFAStateMachine.  The NFAStateMachine uses 

the SAX events to traverse transitions in the state machine.  The NFAStateMachine then 

evaluates any simple value-based predicates for the accepting states in the state machine and 

evaluates the overall predicate by evaluating the AND, OR, or NOT operators if applicable.  The 

NFAStateMachine then returns the set of matching predicate identifiers. 

 

The YFilter C++ library is compiled into both dynamic and static libraries with the name 

libyfilter (libyfilter.a or libyfilter.so).  In order to make the library as easy to use as possible, the 

interface that users of the library will use is the NFAStateMachine class.  This class actually uses 

the other components in Figure 2 and isolates the user from interacting with the other 
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components directly.  The interface uses the words “query” and “predicate” synonymously.  In 

the context of the YFilter C++ library, both words refer to a Predicate as defined in Section 3.3. 

 

The methods that the user of the YFilter C++ library will interface with are the 

addQuery(string predicate), removeQuery(XPQuery* compiledPredicate), evaluateXML(string xml), and 

evaluateXMLFile(string xmlFilename) methods.  The difference between the two evaluation methods 

is that the former parses XML contained in a string while the latter parses XML contained in a 

file.  Before a predicate can be evaluated, it must be added to the state machine.  This is 

performed by the addQuery() method, which parses the predicate, compiles it into an NFA, and 

integrates the NFA into the shared NFA.  The removeQuery() method removes any states that are 

unique to the predicate being removed and cleans up any other data structures associated with 

that predicate.  The evaluate methods evaluate all predicates existing at that time for the given 

XML document and return a result set containing the predicate identifiers for the predicates that 

successfully match the XML (i.e., yield a Boolean true).  

 

The NFAStateMachine class implements the SAX2 parsing interface using the LibXML2 library.  

The LibXML2 library was chosen because it is available on almost every Linux distribution by 

default.  In addition, the 100X JBI already uses this library for its brokering.  It was decided that 

any predicates that cannot be evaluated using the YFilter C++ implementation (i.e., predicates 

not conforming to the YFilter C++ Predicate Grammar) would be evaluated using the current 

100X method, which is to use LibXML2.  In order to only have one parsing of the XML 

document, the NFAStateMachine class implements the LibXML2 SAX2 callback functions.  The 

callback functions are called for various parsing events.  The NFAStateMachine also builds up 

an XML Document Object Model (DOM) by calling the default LibXML2 handler functions so 

that when the SAX events are exhausted, the DOM may be used by any predicate evaluation that 

needs to be evaluated outside of YFilter C++. 
 

The states and transitions that make up the state machine produced by the YFilter C++ 

implementation are equivalent to those produced by the YFilter Java implementation.  However, 
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the data structures used to represent the state machine are different due to some mechanics of the 

C++ language and to accommodate integration with the LibXML2 XML parser [13]. 
 

5.3. Thread-Safety 

The NFAStateMachine class, and therefore the libyfilter library, is not thread-safe.  No two 

threads may call the addQuery(), removeQuery(), evaluateXML(), or evaluateXMLFile() methods 

simultaneously since they all either use or modify the underlying shared NFA.  The façade layer 

has been created to present a thread-safe interface to the end-users of the library (see Section 6).  

 

5.4. Extension of YFilter Predicate Grammar 

The supported grammar for XPath predicates is documented in the 

docs/supportedXPathGrammar.html file provided with the YFilter C++ source code.  The 

notable additions to the original YFilter predicate grammar have resulted in support for the 

following: 

• Multiple clauses combined with AND, OR, and NOT 

o Includes any level of nesting 

• Comparison operators less than, greater than, less than equals, greater than equals, and 

not equal 

• Numerical comparison and equality (the YFilter Java implementation in [2] only 

implemented string comparison) 

o Supports doubles, longs and integers 

• Negative numbers 

• Shorthand for comparisons: 

E.g., /a/b/c = 5 is now valid and is equivalent to /a/b/c[text() = 5] 

• Partial namespace support 

o The namespace prefix in the predicate must match the prefix used in the 

document 
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The XPath position() operator was removed because it has limited utility in the JBI context and 

would incur extra bookkeeping. 

 

The type of the comparison operand is inferred from the XPath scanner generated by Flex.  If the 

comparison operand conforms to the integer scanner token specification, the operand is 

interpreted as an integer.  If the comparison operand conforms to the long scanner token 

specification, the operand is interpreted as a long.  If the operand conforms to the double scanner 

token specification, the operand is interpreted as a double.  If the comparison operand does not 

conform to the integer, long or double scanner token specifications, the operand is interpreted as 

a string.  The value of the data in the XML document will be cast to the type inferred from the 

predicate.  The following describes an example of this type inference. 

 
The predicate is ‘/a/b < 5.5’.  The operand ‘5.5’ will be treated as a double, and the text of 

the ‘b’ element in the XML document that is being evaluated will be interpreted as a 

double.  

 

With this extension, the YFilter C++ implementation can now perform numerical and string 

comparisons, as opposed to only string equality checking in the YFilter Java implementation. 

 

Initially, YFilter C++ implemented the predicate grammar provided by Diao’s YFilter [10].  The 

support of multiple clauses introduces some extra code.  To support multiple clauses, each clause 

is compiled into an NFA.  During the parsing, the values of the clauses are evaluated.  After the 

document parse is complete, all predicate results are computed by performing any conjunctions 

based on the Boolean clause results.  Clearly, adding support for multiple clauses increases the 

processing time for very complicated predicates that have many clauses and levels of nesting.  

However, without this, these predicates would not be optimized by the YFilter at all. 

 

The benefit of the state machine evaluating the clauses and not the entire predicate is that more 

sharing can be obtained.  In a large set of predicates, each with multiple clauses, there is a good 

chance that multiple predicates may contain clauses in common with each other.  There is a lot of 
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efficiency gained when clauses are identical, because only one clause exists in the state machine, 

but the clause result can be used by all predicates that have that clause. 
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6. JBI Integration 

6.1. Requirements 

Both the JBI Reference Implementation (RI) and the 100X JBI benefit from use of the YFilter 

concepts to speed up brokering.  The RI is written in Java [7] and the 100X JBI is written in C++ 

[5].  

 

Both the RI and 100X JBI have the requirement that the predicate evaluator should not be limited 

by the supported predicate grammar of YFilter C++.  Therefore, the interface should support all 

XPath expressions currently supported.  Since the 100X JBI currently supports XPath 1.0 

predicates, we chose the same compatibility level. 

 
6.1.1. Reference Implementation Requirements 

The RI had a PluggablePredicateEvaluator interface where predicate evaluators could be plugged 

into the RI.  This interface had only one method shown in Figure 3 [14]. 

 
 
 
 
 
 
 
 
 
 
 
Unfortunately, this does not allow the specification of predicates ahead of time in order to 

compile a shared state machine.  We worked with the JBI team to come up with a new interface 

that the broker utilizing the YFilter concepts could implement.  This new interface is shown in 

Figure 4. 

 

public interface PluggablePredicateEvaluator { 
 public boolean evaluate(String predicate, String metadata); 
} 

Figure 3: PluggablePredicateEvaluator Interface 
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This interface allows the YFilter C++ library and any other bulk predicate evaluation system to 

plug into the Reference Implementation.  In addition to implementing the methods above, the RI 

also required the interface to be thread-safe.  The updatePredicate() method shown in Figure 4 

can be used to change a predicate that is already registered.  This was added to the interface for 

implementations that could update the predicate with better performance than simply 

unregistering the old predicate and registering the new predicate.  

 
6.1.2. 100X JBI Requirements 

The 100X JBI may have multiple disseminators, each of which is servicing multiple subscribers.  

A disseminator is the process that is responsible for distributing Information Objects to the 

subscribers.  Each disseminator requires from the broker a list of network socket identifiers for 

which the publication matched.  After evaluating the predicates, the broker must inform all 

disseminators which subscribers must receive the IO.  Therefore, the original 100X JBI broker 

identifies each predicate by a disseminator identifier and a socket identifier.  Both the 

disseminator ID and the socket ID are integer data types.  The BulkPredicateEvaluator interface 

shown in Figure 4 specifies only one subscription user identifier (UID) value.  The disseminator 

ID and socket ID could be converted into two strings, concatenated into a single string, and then 

used to identify predicates; however, this would incur the cost of parsing that string to obtain the 

numerical values for each predicate that successfully matched each document.  This overhead 

was not desirable.  Therefore, the disseminator ID and socket ID, each 32 bits in length, were 

combined into one 64-bit long long data type with the disseminator ID occupying the higher 32 

bits and the socket ID occupying the lower 32 bits. 

Figure 4: BulkPredicateEvaluator Interface 

public interface BulkPredicateEvaluator { 
 public void registerPredicate(String ioType, String ioVersion, String subscriptionUID, String predicate); 
 
 public void unRegisterPredicate(String ioType, String ioVersion, String subscriptionUID); 
 
 public void updatePredicate(String ioType, String ioVersion, String subscriptionUID, String predicate); 
 
 public Vector evaluate(String ioType, String ioVersion, String metadata); 
} 
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The 100X JBI can use multiple brokering processes, often running on different nodes of a 

High-Performance Computing (HPC) cluster.  However, each brokering process must have all of 

the predicates as scheduling is performed in a round-robin fashion.  In order to accomplish this, 

each brokering process must have its own instance of the NFAStateMachine.  As currently 

implemented, the brokering process never adds a predicate, removes a predicate, or evaluates an 

XML document simultaneously.  Therefore, the 100X JBI did not need thread-safe access to the 

YFilter C++ library. 

 

6.2. Solution: YFilterPredicateEvaluator Template Class 

The implemented solution to accommodate both the requirements of the RI and the requirements 

of the 100X JBI was to create a C++ template class [15] where the user of the template class 

could specify the type of the subscriptionUID.  This solution would allow the RI to use strings 

and the 100X JBI to use long longs.  This solution would also allow any other users to specify 

their own types.  This template class would also provide a thread-safe interface to the underlying 

NFAStateMachine.  The YFilterPredicateEvaluator template class implements this solution. 

 
6.2.1. Managing Multiple NFAStateMachines 

Since the JBI imposes a restriction that subscribers specify an IO type and IO version and that 

those subscribers will only receive publications of the specified type and version, the 

YFilterPredicateEvaluator uses a separate NFAStateMachine instance for each type and version 

combination.  This not only helps avoid possible incorrect matches, but this also reduces the size 

of the state machines and minimizes the predicate evaluation to only those predicates which have 

successfully matched on type and version. 

 
6.2.2. Evaluation of Incompatible Predicates 

In addition, the YFilterPredicateEvaluator performs any predicate evaluation that is not 

supported by the YFilter C++ grammar.  The YFilter C++ is first executed, which performs the 

parsing of the document and all evaluations that are YFilter C++ compatible.  Then LibXML2 is 
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used to perform any remaining predicate evaluations using the DOM built by the YFilter 

execution.  This ensures that any given document is only parsed once.  This can be done because 

YFilter C++ implements the SAX2 handler of the LibXML2 library and forwards all handler 

calls to the default SAX2 handler to build the DOM prior to doing YFilter C++ computation. 

 
6.2.3. Thread-Safety 

The YFilterPredicateEvaluator also provides thread-safety.  The YFilterPredicateEvaluator 

allows multithreaded access to different IO type and version combinations and synchronizes 

access to the same type and version.  Also, for the same IO type and version, calls to 

registerPredicate(), unRegisterPredicate(), and evaluate() can occur simultaneously because 

registerPredicate() and unRegisterPredicate() do not actually modify the state machine.  Instead, 

they perform as much of the processing as they can without the state machine and then enqueue 

the necessary modifications to the state machine to be performed later.  However, they keep the 

expected semantics in that after registerPredicate() returns, matches on that predicate will be 

returned, even if the predicate is not integrated into the shared state machine yet.  Likewise, 

when unRegisterPredicate() returns, matches with the corresponding subscriptionUID will no 

longer be returned.  This delaying of addition and removal of states into the shared state machine 

was done to allow registration and unregistration without disrupting the critical path, which is 

predicate evaluation. 

 
6.2.4. Modifying the NFAStateMachine 

The YFilterPredicateEvaluator provides two ways to optimize the predicates and integrate them 

into the proper NFAStateMachine.  In the following subsections, an alteration or modification of 

the NFAStateMachine is the addition or removal of a predicate (which may add or remove states 

within the NFAStateMachine). 

 
6.2.5. The StateMachineAlterationThread 

The first way to modify the NFAStateMachine is to use a background thread called the 

StateMachineAlterationThread.  This thread is activated by calls to register and unregister.  The 

StateMachineAlterationThread will then try to acquire locks for all state machines that need to 
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have modifications performed.  If a lock is acquired, the needed modifications are performed, 

which is done by adding or removing predicates from the state machine.  If the lock for a given 

state machine cannot be obtained, it is skipped and will be tried the next time the thread is 

activated.  The following example demonstrates how the StateMachineAlterationThread works. 

 
For simplicity, IO versions will be omitted from this example.  A predicate for IO type A is 
registered.  The predicate is compiled into its individual state machine by the 
YFilterPredicateEvaluator, and the compiled predicate is added to the add queue.  Then 
StateMachineAlterationThread (SMAT) is activated.  It attempts to acquire the lock for the 
NFAStateMachine that is used for IO type A (SM-A).  At this particular moment, SM-A is 
in the middle of an evaluation and the lock cannot be acquired. 
 
Sometime later, a predicate for IO type B is registered.  The predicate is compiled and 
added to the add queue for the NFAStateMachine servicing IO type B (SM-B).  The 
SMAT is activated again.  The SMAT attempts to obtain the lock on SM-A and is 
successful.  The SMAT adds the first predicate and any other compiled predicates in the 
add queue to SM-A.  The SMAT then removes any predicates in the remove queue for 
SM-A.  The SMAT then releases the lock on SM-A.  Next the 
StateMachineAlterationThread attempts to obtain the lock on SM-B and is successful.  
The SMAT then processes the add queue and remove queue for SM-B.  Lastly, the 
SMAT releases the lock on SM-B.  

 
This is the default behavior of the YFilterPredicateEvaluator and requires no further action by 

the user to optimize the predicates.  However, the user can manually activate the 

StateMachineAlterationThread by calling the updateStateMachine() method.  The obvious 

downside to using the StateMachineAlterationThread is that the optimization of the predicates 

and the overall performance of the brokering operation is less predictable and is partly based on 

how often the background thread can obtain the state machine locks. 

 
6.2.6.  Manually Requesting Modification of the NFAStateMachine 

The second method of adding and removing predicates from the NFAStateMachine provides 

more predictable behavior but requires the user of the YFilterPredicateEvaluator to make explicit 

calls to the updateStateMachine() method with an optional maximum amount of alterations to 

complete.  This allows the user to direct when and how many modifications will occur.  This will 

also yield more predictable brokering latencies as the evaluate() method will not have trouble 

acquiring the state machine lock.  This second option was added at the request of a 100X JBI 

team member who desired the ability to control the optimization and have more predictable 
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brokering latencies.  The drawback of this option is that optimizations can be introduced sooner 

using the first method, especially during light evaluation load.  At the time of writing this report, 

no decision has been reached as to which option is preferred for the RI. 

 

6.3. Integration with the 100X JBI 

The overhead of the synchronization in the YFilterPredicateEvaluator was not desired for the 

100X JBI, which did not need the thread safety.  Therefore, a separate concrete class (as opposed 

to a template class) called YFilterPredicateEvaluator100X was created with the same 

functionality, but with all of the synchronization code stripped out.  This class is located in the 

100X JBI code base in the PubCatcher subdirectory.  The original YFilterPredicateEvaluator 

template class is still located in the YFilter C++ code base in the YFilterPredicateEvaluator 

subdirectory. 

 

The JbiBroker class is the class that performs the brokering task in the original 100X JBI.  In 

addition to a refactorization of the YFilterPredicateEvaluator for the 100X JBI, the 

YFilterBroker class was created.  The YFilterBroker class inherits from the JbiBroker class, 

which was refactored to use virtual methods.  This allows other implementations to extend the 

JbiBroker class.  The YFilterBroker class conforms to the same interface as the JbiBroker and 

uses the YFilterPredicateEvaluator100X under the hood.  The YFilterBroker class is also 

responsible for communicating with the disseminators for matching subscriptions.  Since the 

YFilterBroker completely encapsulates the use of the YFilterPredicateEvaluator100X and 

conforms to the JbiBroker interface, the use of YFilter C++ has no impact on the rest of the 

100X JBI code.  By this measure, the YFilterBroker can be easily swapped out for the original 

JbiBroker or any other future broker that extends the JbiBroker class.  The YFilterBroker is now 

enabled by default on the 100X JBI. 

 

6.4. Integration with the Reference Implementation 

The YFilterPredicateEvaluator template class conforms as closely to the BulkPredicateEvaluator 

Java interface as a C++ class can (given the differences between C++ and Java).  There is a need 
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of a Java Native Interface (JNI) wrapper to translate between Java and C++.  This JNI wrapper 

has not been created at the time this report was written.  The implementation of the JNI wrapper 

should be straightforward because the only non-primitive items in the YFilterPredicateEvaluator 

template class interface are C++ STL classes.  At the time of the writing, the integration with the 

Reference Implementation of the JBI is not complete. 
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7. Performance Analysis 

7.1. Hypothesis 

By the use of YFilter concepts in brokering we expect to see an increase in throughput and 

reduction of brokering latency as the number of subscriptions increase when compared to the 

previous 100X JBI broker (i.e., the JbiBroker class).  Our measure of throughput is the number 

of Information Objects that can be pushed through the system per second (IOs / sec).  Our 

measure of brokering latency is the amount of time it takes to evaluate all active predicates for a 

given message and to call the disseminators corresponding to the matching subscriptions.  The 

set of active predicates is the predicates for a given set of subscribers.  We do not expect that 

YFilter C++ will have a lower brokering latency for a single predicate, since there is extra 

overhead required in maintaining and executing the state machine.  However, we do expect to 

see the YFilterBroker surpass the original 100X broker with only a few subscribers.  The 

experiment in Section 7.3 will show that this point is at around 10 subscribers. 

 

7.2. JBI Configuration 

The 100X JBI can be configured in many ways, and can be distributed across multiple 

computing nodes.  Unless otherwise specified, the configuration of the JBI for all of the 

experiments was that of Table 1.  Three nodes of the Coyote High-Performance 

Computing (HPC) cluster were used.  Each Coyote node has dual 3.06 GHz Intel Xeon 

processors, 4 GB DRAM and 400 GB disk space.  The nodes were connected by a Gigabit 

Ethernet interconnection fabric [5].  Each node had a Subcatcher (i.e., disseminator) to distribute 

the dissemination load for large amounts of subscribers.  In addition, each node had tasks 

associated with queries and archiving, though none of these tasks were invoked.  All tests were 

strictly publish/subscribe tests and archiving was disabled. 
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Table 1: JBI Configuration 
 

Node Tasks 
Coy13 Pubcatcher, Subcatcher, Connection Service, QueryCatcher 
Coy14 QueryWorker, Broker, Archiver, Subcatcher, Archiver 
Coy15 QueryWorker, Broker, Archiver, Subcatcher, Archiver 

 
 

We used an Information Object that could obtain timing information internal to the 100X JBI 

server.  The metadata was 604 bytes in length. 

 

7.3. Broker Latency 

The average broker latency was first measured.  This is the mean time it takes to evaluate the 

existing predicates and call the appropriate disseminators with the matching results.  Each data 

point is the mean of 9000 trials.  The brokering latency was measured from 1 to 2900 

subscribers.  The maximum number of subscribers that was obtained was 2900 with the current 

100X implementation due to factors (primarily in the operating system) unrelated to the 

YFilter C++ implementation.  This was also the most subscribers that had been tested in any of 

the 100X JBI tests have been conducted with to date.  When attempting to connect more than 

2900 subscribers, the following error occurs on the 100X JBI server:         

 

“WARNING: ConnectionService: during first client receive: ChannelException: Failed on recv EFAULT.” 

 
For this experiment, we used two Coyote nodes besides those used for the 100X JBI server.  One 

node published messages; the other node contained N subscribers, where N varied as high as 

2900 subscribers.  Each subscriber had the following two-clause predicate:  

  

/message/from = ‘RateTester’ and /message/messno = $i 
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where the variable $i is replaced by the number of the subscriber.  The publisher publishes 

messages where the /message/messno field circulates from 0 to N-1 and then wraps back around.  

This setup ensures that there is always one match.  The publisher published messages as fast as 

possible.  The fact that messages may become backed up in the pubcatcher queue is 

inconsequential because we are only measuring the brokering latency, not end-to-end latency.  

Also note that all data regarding broker latency was recorded using this configuration.  The 

results for a different set of predicates will vary.  The performance evaluation of a randomly 

generated set of predicates has not been tested yet.  However, that may be performed in the 

future. 

 

Measurements were taken after all predicates were optimized and integrated into the state 

machine.  Measurements were taken for the original 100X JbiBroker and for the new 

YFilterBroker.  Besides the switch of broker class, everything else was unchanged. 

 

 
Figure 5: Broker Latency (µs) vs. # Subscribers 
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As shown in Figure 5, the YFilterBroker scales much better than the 100X JbiBroker.  The 

intersection of the latency of the YFilterBroker and the 100X broker is after only a few 

subscribers.  With 10 subscribers, the YFilterBroker evaluated faster than the 100X broker.  The 

100X broker crosses the 1 ms mark at about 200 subscribers, where the YFilterBroker crosses 

the 1 ms mark at about 2500 subscribers.  The slope of the YFilterBroker is about 12 times 

smaller than the slope of the 100X broker.  This means that the broker latency will scale about 12 

times better with the YFilterBroker. 

 
 

 
Figure 6: Brokering Speedup (X) vs. # Subscribers 

 
 
The speedup (i.e., the ratio of average broker latency of the 100X broker over the average broker 

latency of the YFilterBroker) is shown in Figure 6.  The speedup varies with the number of 

subscribers.  However, we achieve a maximum speedup of about 15X.  The speedup begins to 

decrease after a very large number of subscribers (about 1500).  This is due to a slight upward 

curvature of average broker latency for the YFilterBroker (Figure 5) that starts to appear at about 
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1500 subscribers.  We believe this to be due to an increase in cache misses with large numbers of 

subscribers.  Because the evaluation of a predicate requires accessing one object for each clause 

and accessing one object for the predicate, each 2-clause predicate requires three object accesses 

for each subscription after the clause results are computed.  Because each of these three objects 

must be accessed for each subscriber, we believe there to be an increase in cache misses during 

the processing required after clause results are computed.  However, this belief has not been 

verified experimentally. 

 

 
Figure 7: A closer look at YFilterBroker Broker Latency 

 
Figure 7 is a graph of the broker latency using the YFilterBroker alone.  We can see that the data 

appears to follow a quadratic curve rather than a linear line.  This curve states that there is 

0.2 ns * n^2 latency in addition to the linear term.  The 0.2 ns coefficient is quite small, and if 

this trend continues, it will intersect the 100X JBI line again at 27,300 subscribers in this test 

case.  Unfortunately, since 2900 is the maximum number of subscribers that can currently be 

simultaneously connected in the 100X JBI, we cannot run this test with more subscribers to see if 
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this trend continues.  To this end, the next section describes a test that just measures the 

YFilter C++ evaluation time for up to 100,000 predicates. 

 

7.4. YFilter C++ Evaluation Time 

Due to the inability to test brokering latency above 2900 subscribers, we measured the 

YFilter C++ evaluation time up to 100,000 predicates using the same scheme for the predicates 

used in Section 7.3.  The YFilter C++ evaluation time is a subset of the broker latency.  The 

YFilter C++ evaluation time is strictly the time it takes for the YFilter C++ processing.  This 

excludes the time spent in the YFilterPredicateEvaluator, which is negligible, and the time spent 

communicating with the disseminators.  The YFilter C++ evaluation time includes all parsing 

and evaluation time due to the state machine. 

 

 
Figure 8: YFilter C++ Mean Evaluation Time (µs) vs. # Predicates 

 
As shown in Figure 8, the YFilter C++ evaluation time is indeed linear, though it has a bit of a 

curve for lower numbers of predicates (e.g., less than 9,000 predicates).  According to this data, 

the YFilterBroker should not ever intersect the 100X broker latency after the initial intersection 
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at around 10 subscribers.  So even with the slight curvature for lower numbers of predicates, the 

YFilterBroker should still outperform the 100X broker even at large numbers of subscribers. 

 

7.5. Throughput 

The throughput in publications per second was measured for both the YFilterBroker and the 

100X JbiBroker.  The experiment configuration is shown in Figure 9.  In this experiment, six 

nodes were used in addition to the nodes used for the JBI server.  There were two publishers on 

each of three nodes.  Each publisher published 10,000 publications of the testmessage IO as fast 

as possible.  For each data point, N subscribers with predicates were subscribing.  The other 

three nodes were used to run N/3 subscribers, where N varied up to 2900 subscribers.  We used 

the same predicate scheme as Section 7.3.  This ensured that only one subscriber would be sent 

each publication.  This ensures that the bottleneck is the brokering task. 

 

 
Figure 9: Throughput Experiment Configuration 

 
Figure 10 shows the achieved throughput in publications/second for both the 100X broker and 

the YFilterBroker.  From this figure, we can clearly see that the YFilterBroker scales better in 

terms of throughput than the 100X JbiBroker.  The trend lines are shown to give a sense of how 

the throughput may continue to scale as more subscribers are added. 

 

Figure 11 displays the benefit of the YFilterBroker in terms of the throughput ratio, which is the 

number of times more throughput the YFilterBroker can achieve over the 100X broker.  With 

this experiment, we achieve a maximum of about 15X improvement over the 100X JBI.  This is 

similar to the improvement gained in broker latency discussed in Section 7.3.  
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7.6. Performance Analysis Summary 

The speedup obtained by the YFilterBroker will vary with the amount of similarity in the 

predicate set.  However, for the experiments described in this section, the YFilterBroker is 15 

times faster than the broker of the original 100X JBI.  Since the 100X JBI is 347 times faster 

than the RI with only one broker [5], we expect to see even greater improvements when 

compared with the Reference Implementation of the JBI. 

 
Figure 10: Throughput vs. # Subscribers 
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Figure 11: Throughput Ratio (X) vs. # Subscribers 
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8. Known Engineering Limitations 

Beyond the limitations documented here, there are some minor future work items that are listed 

in the TODO.txt in the root directory of the YFilter C++ code base. 

 

8.1. XPath Grammar Support 

The XPath grammar supported by the YFilter C++ implementation only supports the child and 

descendant navigation axes.  The current YFilter C++ code itself does not support other axes 

such as ancestor, parent, following, preceding, etc.  However, the YFilterPredicateEvaluator 

brings the supported grammar up to the XPath 1.0 specification because of the use of the 

LibXML2 library as the fallback predicate evaluator.  Some features of XPath 2.0 such as regular 

expression support may be desired by some versions of the JBI.  Support for these features could 

be a future extension of this work. 

 

The use of other navigation axes has not been thoroughly tested.  There is one test case in the 

class NFAStateMachineTest that shows that other axes are properly rejected by the state 

machine.  Further testing of how the YFilter appropriately rejects the navigation axes that are not 

supported and how LibXML2 handles them should be performed.  

 

8.2. Type Inference of Value-Based Predicates 

Currently, there is a limitation in that the type of the operand of the simple value-based predicate 

is inferred from the predicate.  The data in the XML document being parsed is cast to the type 

inferred from the predicate.  This could lead to a semantic misunderstanding.  However, an easy 

user workaround is available. 

 

Consider the example where a user supplies the following predicate: /a = 50.  In this case, the 

type inferred would be an integer.  If the document contained an element ‘a’ whose element text 
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was 50.1, this predicate would evaluate to true because the value in the document, 50.1, is cast to 

an integer prior to comparison.  

 

It is easy to mitigate this mistake by simply changing the predicate to /a = 50.0 where the data is 

expected to be a floating point number.  With this change, the inferred type is now a double, and 

the predicate will evaluate to false. 

 

8.3. Sharing of Value-Based Predicates 

In the current implementation, simple value-based predicates are only shared if there is an exact 

clause match in which case the entire clause is shared.  This is not too detrimental because there 

are only two cases where two clauses that have the same path and same simple value-based 

predicate at the deepest level would not have an exact clause match.  The first is when the 

clauses have simple value-based predicates that differ at other levels.  For example, the two 

predicates: 

  

/a/b[text() = 5]/c[text() = 10] 
 /a/b[text() = 6]/c[text() = 10] 
 
would not share the evaluation of /c[text() = 10] because they do not have an exact clause match.  

However, from our present exposure to the types of predicates used in the JBI, this is not a 

common case.  To date, we have not seen any predicates that have simple value-based predicates 

at multiple levels. 

 
The second case is when two predicates differently use descendants.  For example, the two 

predicates: 

 
 /a//b/c = 5 
 /a/b/c = 5 
 
would not share the evaluation of c = 5 even though there could be states that both are evaluated.  

For optimal performance, subscribers should use the same style of predicates (i.e., to use 

descendant operators or not use descendants).  In general, not using descendant operators is 



 35

faster.  The sharing limitations described in this section do not prevent predicates from being 

evaluated properly. 

 

9. Ideas for Extensions to this Work 

One idea briefly discussed in the original YFilter paper [2] is treating simple value-based 

predicates as first-class citizens within the state machine.  While this would be straightforward 

for equality, this approach becomes trickier for other comparisons.  In addition, the use of simple 

value-based predicates at levels of the clause other than the deepest level will cause more states 

in the state machine and less sharing of states.  In addition, the increase in states required to 

represent a clause would add to the insertion and deletion time of a clause.  At this point we 

would cautiously suggest investigation into this idea.  We would not suggest treating simple 

value-based predicates as first-class citizens in the state machine because we believe (i) more 

sharing occurs at the clause level and (ii) there could be a blowup in the number of states if 

conjunctions are treated as states.  

 

A second idea is to more tightly integrate the simple value-based predicates into the states.  

Currently, an instance of the XPPath class (i.e., the class representing a compiled clause) may 

have simple value-based predicates at any level.  However, the simple value-based predicates are 

currently properties of the clause (i.e., the XPPath class).  If the simple value-based predicates 

were properties of the state, and they were sorted by the property of the document that they 

compare against, i.e., attribute name or text(), the pointer accesses required for the total 

evaluation could be reduced. 



 36

 

10. Conclusion 

The use of YFilter concepts has been shown to improve the brokering latency and throughput for 

the 100X JBI.  The degree of improvement will vary depending on how similar the set of 

predicates are.  The broker using the YFilter C++ library is slightly slower for one subscriber due 

to the extra bookkeeping necessary for the state machine.  However, the benefit of YFilter C++ 

can be seen with even a small number of subscribers.  Speedups in broker latency of up to 15X 

have been experienced with the current implementation.  The architecture of the 100X JBI 

allows scaling of throughput by adding more brokers to the system.  In addition to better scaling 

of throughput, the implementation of YFilter C++ and subsequent integration with the 100X JBI 

enables improved scalability of brokering latency and therefore improved scalability of the 

end-to-end latency experienced by the clients.  The use of the YFilterBroker also does not 

prevent the scaling of throughput by addition of more broker processors. 
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